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A B S T R A C T

Cyanobacterial harmful algal blooms (cyanoHAB) cause extensive problems in lakes worldwide, including
human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a
particular concern in both recreational waters and drinking water sources because of their dense biomass and the
risk of exposure to toxins. Successful cyanoHAB assessment using satellites may provide an indicator for human
and ecological health protection. In this study, methods were developed to assess the utility of satellite
technology for detecting cyanoHAB frequency of occurrence at locations of potential management interest. The
European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the
equivalent series of Sentinel-3 Ocean and Land Colour Imagers (OLCI) launched in 2016 as part of the
Copernicus program. Based on the 2012 National Lakes Assessment site evaluation guidelines and National
Hydrography Dataset, the continental United States contains 275,897 lakes and reservoirs> 1 ha in area.
Results from this study show that 5.6% of waterbodies were resolvable by satellites with 300 m single-pixel
resolution and 0.7% of waterbodies were resolvable when a three by three pixel (3 × 3-pixel) array was applied
based on minimum Euclidian distance from shore. Satellite data were spatially joined to U.S. public water
surface intake (PWSI) locations, where single-pixel resolution resolved 57% of the PWSI locations and a 3 × 3-
pixel array resolved 33% of the PWSI locations. Recreational and drinking water sources in Florida and Ohio
were ranked from 2008 through 2011 by cyanoHAB frequency above the World Health Organization’s (WHO)
high threshold for risk of 100,000 cells mL−1. The ranking identified waterbodies with values above the WHO
high threshold, where Lake Apopka, FL (99.1%) and Grand Lake St. Marys, OH (83%) had the highest observed
bloom frequencies per region. The method presented here may indicate locations with high exposure to
cyanoHABs and therefore can be used to assist in prioritizing management resources and actions for recreational
and drinking water sources.

1. Introduction

Harmful algal blooms are environmental events that occur when
algal populations achieve sufficiently high density resulting in negative
environmental or health consequences (Smayda, 1997). Blooms asso-
ciated with photosynthetic prokaryotes (cyanobacterial harmful algal
blooms [cyanoHAB]) occur worldwide and have been documented
across the United States (Loftin et al., 2016). Toxic blooms are a global
issue and examples exist on every continent such as the Baltic Sea in
Europe (Kahru et al., 2007), Lake Victoria in Africa (Verschuren et al.,

2002), Lake Taihu in Asia (Duan et al., 2009), Lake Erie in North
America (Stumpf et al., 2012), Murray River in Australia (Al-Tebrineh
et al., 2012), several reservoirs in South America (Dörra et al., 2010),
and even Antarctica (Hitzfeld et al., 2000). Harke et al. (2016) reported
documented events of the freshwater Microcystis species in 108 out of
257 countries and territories. Many U.S. states have issued health
advisories or closed recreational areas due to potential risks from
cyanoHAB exposure (Chorus, 2012; Graham et al., 2009). CyanoHABs
typically result from a combination of excess nutrients (Michalak et al.,
2013) and other environmental conditions, such as warming tempera-
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tures and water column stratification (Paerl and Huisman, 2008).
Alterations in land-use practices, such as urbanization or agricultural
practices, can change sediment loading and increase nutrient delivery
in watersheds (Lunetta et al., 2010), which is known to influence
cyanobacterial growth. CyanoHABs can produce an array of potential
toxins and cause nuisance odors, hypoxia, and unappealing surface
scums creating a potential for adverse recreational exposure and
ecological impact (Codd et al., 2005a). Additional consequences of
cyanoHABs may include undesirable finished drinking water, increased
drinking water treatment costs, and economic and infrastructure costs
such as loss of revenue from recreational systems and from businesses
that rely on potable water (Dodds et al., 2009; Steffensen, 2008).

Water quality is a critical consideration in determining water
resource availability for human consumption, aquatic life, and recrea-
tion (U.S. EPA, 2013b). Despite sufficient water quantity, water
availability may be limited if quality does not meet the requirements
of intended use. CyanoHAB toxins frequently limit water resource
availability by negatively impacting water quality and rendering it
unsuitable for multiple uses. Potential short- and long-term human
health effects of cyanoHABs and the toxins they produce include
dermatitis; gastrointestinal, respiratory, and neurological impairments;
and adverse impacts to liver and kidney function. These effects may
reduce the availability of drinking water resources and increase
treatment costs (Hilborn et al., 2014). CyanoHABs and associated
toxins have been identified in drinking water sources throughout the
world (Hoeger et al., 2005). Documented events include impaired
drinking water resources at Haimen city, Fusui county, China, in 1993
and 1994 (Ueno et al., 1996); Wuxi city, Jiangsu, China in May 2007
(Qin et al., 2010); Caruaru, Brazil, in 1996; and Australia in 1983
(Falconer and Humpage, 2005). Depending on the severity of a
cyanoHAB event, municipalities may issue “Do Not Drink” advisories,
as they did in Carroll Township, Ohio, in September 2013 (Henry,
2013) and in Toledo, Ohio, in August 2014 (Sonich-Mullin, 2014).

An additional route of cyanoHAB toxin exposure is through recrea-
tional contact, including dermal and oral contact, with occasional
exposure through inhalation of surface waters (Backer et al., 2015;
Backer et al., 2010; Codd et al., 2005b). Adverse human health impacts
from recreational exposure to cyanoHABs include, but are not limited
to, headaches and allergic reactions, including blistering, vomiting, and
diarrhea (Falconer, 1999; Stewart et al., 2006b). CyanoHABs also pose
risks to non-human populations. Negative impacts include canine
illness and death, where the number of reported events and animals
affected has increased over the past 50 years (Backer et al., 2013).
Wildlife and livestock illness and death have been globally reported in
animals ranging from traditional farm stock to fish, birds, and insects
(Backer et al., 2015; Hilborn and Beasley, 2015). In birds, cyanobacter-
ial toxins can cause neurological disease leading to brain lesions and
death. The documented deaths of over 170 bald eagles, thousands of
American coots, the federally endangered Florida snail kite, and other
species of wild birds have been caused by cyanoHAB events (Dodd
et al., 2016).

Cell counts and microcystin concentrations are most commonly
used to evaluate potential human health risk, and many states have
customized thresholds based on additional information gathered locally
(Graham et al., 2009). The World Health Organization (WHO) has a
three-level guideline approach, which describes concentrations of the
ubiquitous photosynthetic pigment chlorophyll-a and cyanobacterial
cell abundance (cells/mL) to determine the level of associated risk to
support a warning or closure. WHO provides estimates of microcystin
that could correspond to the cell abundance at each guideline level. The
U.S. Environmental Protection Agency (U.S. EPA) also has the drinking
water health advisory for cyanobacteria microcystins toxin (U.S. EPA,
2015a).

Many U.S. states have experienced challenges in developing mon-
itoring programs for cyanoHABs because of the need to cover large
geographic areas with insufficient resources. The presence of cyanotox-

ins is a primary indicator of human health risk, but quantifying all
forms and derivatives of the related toxins is difficult, expensive, and
time-intensive. There are approximately 246 variants of microcystin-
LR, 3 variants of cylindrospermopsin, and 7 variants of anatoxins
(Loftin et al., 2016; Meriluoto et al., 2017; U.S. EPA, 2014). Loftin et al.
(2016) highlights that WHO thresholds agreed in only 27% of cases
between all three recreational risk metrics (cyanobacteria abundance,
chlorophyll-a, and microcystins) when applied against the 2007
National Lakes Data (2007 NLA), clearly demonstrating that the
presence of chlorophyll-a does not always equate to cyanoHABs and
that cyanobacterial abundance can result in over-prediction of micro-
cystin recreational risk. However, microcystin may not be a good
predictor of other classes of toxins also produced by cyanoHABs with
co-occurrence between cylindrospermopsins, microcystins, and saxitox-
ins only 0.32% of 2007 NLA samples. Epidemiological studies have
reported statistically significant associations between inflammatory and
allergenic human health exposure to water containing cyanoHAB cells
(Lévesque et al., 2016; Lévesque et al., 2014; Lin et al., 2016; Pilotto
et al., 1997). Some adverse health endpoints may not be associated with
exposure to known toxins (Stewart et al., 2006a; Stewart et al., 2006b).
Thus cyanobacterial abundance is perhaps better suited for assessing
nationwide risks depending on the balance between public health and
socioeconomics. In consideration of these challenges and uncertainties,
new tools and methods are needed to help develop reliable and cost-
effective monitoring programs at lake, watershed, state, regional, and
national scales with sufficient spatial-temporal resolution to detect
change where field monitoring alone may not provide sufficient cover-
age.

This study explores the possibility of using satellite remote sensing
technology to assess cyanoHAB abundance for spatially resolvable
inland recreational and public water supply lakes, reservoirs, and ponds
using algal pigments as surrogates for HAB and cyanoHAB abundance
related human health risk thresholds. The presence of cyanoHAB
abundance estimated from satellites can be used to prioritize water-
bodies requiring further evaluation for cyanotoxins. Although satellite
observations cannot detect toxins (Stumpf et al., 2016), they can be
used to quantify cyanoHAB abundance (Kutser, 2009). Previous studies
provide a comprehensive review of past, present, and new satellite
sensors available for deriving water quality in estuaries and inland
waters (Dörnhöfer and Oppelt, 2016; Tyler et al., 2016). The advan-
tages and disadvantages of sensor spatial, spectral, temporal resolution,
and other parameters are also discussed in other studies (Mouw et al.,
2015), along with recent progress updates (Palmer et al., 2015).

The use of satellites for management involves spatial coverage of
both recreational and drinking water lakes and reservoirs. Satellite
remote sensing has reportedly detected cyanoHAB abundance in
drinking water sources, and most efforts to date have focused primarily
on algorithm development, validation, and refinement (Medina-Cobo
et al., 2014; Song et al., 2013; Song et al., 2014). Satellites can provide
a synoptic survey, but their scope of application is poorly defined.
Water quality managers need to understand the number of lakes and
reservoirs resolvable by satellite. Once the scope of application is
defined, it may be possible to use satellite technology to support
management needs such as providing occurrence information relevant
to the national Safe Drinking Water Act (SDWA) Contaminant Candi-
date List (CCL) (U.S. EPA, 2013a, 2016a) and the Unregulated
Contaminant Monitoring Rule (UCMR) (U.S. EPA, 2016b). The SDWA’s
CCL includes drinking water contaminants (such as cyanotoxins) known
or anticipated to occur in public water systems not currently subject to
regulations. The UCMR includes contaminants suspected to be present
in drinking water that do not yet have set standards under the SDWA.
Selection of contaminants for the UCMR is largely based on the CCL.

The objectives of this study are to (1) determine the number of
surface water bodies on the basis of permissible use as recreational and
drinking water sources viewable with existing pixel resolutions (defined
as the minimum spatial detection area) measured by satellites licensed
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for public use and (2) examine the cyanoHAB frequency above
recreational risk thresholds in two U.S. states (Florida and Ohio) on
the basis of phycocyanin using four Area of Interest (AOI) categories.
AOI categories allowed the frequency of occurrence to be calculated on
the same base group of lakes, used in each category (see Section 2.3),
and could be compared with water pixels associated with a public water
surface intake (PWSI). More broadly, this study explores issues relevant
to understanding the general utility of remotely sensed data for
cyanoHAB occurrence monitoring including the spatial resolvability
of waterbodies based on the pixel resolution of currently operational
satellite sensors and those likely to become operational in the near
future, the spatio-temporal coverage of satellite data relevant to
assessments, and the possibility of developing transferrable methods
capable of determining cyanoHAB occurrence at specific points of
management interest (such as drinking water intakes and recreational
waterbodies).

2. Materials and methods

2.1. Satellite derivation of cyanoHAB abundance

Full resolution (300 m at nadir) scenes from the European Space
Agency’s MEdium Resolution Imaging Spectrometer (MERIS) were
obtained for parts of Florida and Ohio between the years 2008 and
2011 (Fig. 1). Nadir is defined as the point directly below the satellite
on the Earth surface. Standard MERIS Level–1B data are archived at the
NASA Ocean Color website https://oceandata.sci.gsfc.nasa.gov/. Data
were processed using the National Oceanic and Atmospheric Adminis-
tration’s (NOAA) satellite automated processing system, which incor-
porates the National Aeronautics and Space Administration (NASA)
standard ocean color satellite processing software distributed within
the NASA Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Data
Analysis System (SeaDAS) version 7.1 (Baith et al., 2001) package
and the Shuttle Radar Topography Mission (SRTM) GC land mask
(Carroll et al., 2009). Images were processed to Universal Transverse
Mercator (UTM) projection with nearest-neighbor interpolation. Esti-
mates of spectral surface albedo, Rhos, were generated by removing
Rayleigh radiances from the top-of-atmosphere signal measured by the
satellite. Clouds were masked using a spectral albedo threshold algo-
rithm that accounts for turbid water to eliminate misidentification of
pixels with bright reflectances resulting from intense blooms as clouds.
Mixed land-water pixels were identified when Rhos(885) was> both
Rhos(709) and Rhos(754). The Rhos estimates were used to calculate
the Cyanobacteria Index (CI) from the spectral shape algorithm
centered on 681 nanometers (nm), CI = −SS(681) (Wynne et al.,
2008), routinely used in Lake Erie (Stumpf et al., 2016). The MERIS
CI output for each image then was converted to cyanoHAB abundance
in cells per milliliter (cells mL−1) following Wynne et al. (2010), where
cyanoHAB abundance = 1.0 × 108*CI. Field validation of the CI algo-
rithm (Fig. 2) was previously demonstrated in the same regions as this
study (Lunetta et al., 2015; Tomlinson et al., 2016). Weekly 7-day
composite images were created by retaining the maximum value
detected for each pixel within the time period. The weekly composites
were transformed to Albers Equal Area projection with nearest-neigh-
bor interpolation to match the projections of the National Hydrography
Dataset (NHD).

2.2. Spatial coverage of water bodies

The ability of a satellite to resolve a waterbody depends on the ideal
pixel size of the satellite sensor at nadir and on the combined size and
geometry of the waterbody. A waterbody mask was generated using the
NHD Plus version 2.0 (NHDPlusV2) (McKay et al., 2012) to identify
waterbodies that could be resolved by satellites. All NHDPlusV2
features classified as lakes, ponds, and reservoirs were extracted and
then filtered using U.S. EPA’s 2012 National Lakes Assessment (NLA)

site evaluation guidelines (U.S. EPA, 2011). Waterbodies classified as
intermittent or estuarine, or with a surface area< 1 ha, were excluded
from further analysis based on NLA criteria. Remaining NHDPlusV2
NLA waterbodies were rasterized at 30 m spatial resolution to match
the highest nadir pixel resolution of the multi-spectral bands on
operational satellites such as the Landsat 8 Operational Land Imager
(OLI) or Sentinel-2 series MultiSpectral Instruments (MSI).

The waterbody spatial coverage with resolvable satellite pixels was
calculated based on the minimum Euclidian distance from shore that
will accommodate a given square window width, defined as

R a= 2
2 (1)

Where a is the window width associated with a single satellite pixel (for
example, MERIS 300 m pixel) or a combined array of multiple satellite
pixels (for example, MERIS three- by three-pixel [3 × 3-pixel] array of
300 m pixels is equal to 900 m), and R is the radius of the circle that
circumscribes the pixel(s) (Fig. 3). In addition, the maximum distance
to shore was calculated for each NHDPlusV2 NLA waterbody. If an
NHDPlusV2 NLA waterbody’s maximum distance to shore is ≥R, the
waterbody would accommodate a window width of a. For example,
using Eq. (1) a single 300 m MERIS satellite pixel has a radius
R= 212 m and a 3 × 3 array of 300 m MERIS pixels has a radius
R=636 m.

2.3. Spatial coverage of public water surface intakes and potential
recreational/ecological cyanoHAB exposures

The U.S. EPA Office of Ground Water and Drinking Water provided
the locations of PWSIs. A PWSI was assigned to an NHDPlusV2 NLA
waterbody if it was within a 100 m buffer distance and retained for
further analysis. The 100 m buffer is predefined by the PWSI database
and cannot be altered. PWSI locations were spatially joined to the
nearest suitable satellite pixels. Isolated pixels and pixels not occurring
in clusters of at least four or more (2 × 2-pixel matrix or larger) were
eliminated from analysis to minimize the effect of mixed land-water
boundary pixels. To determine cyanoHAB abundance for a specific
PWSI, it was necessary to determine which water pixels in the satellite
imagery should be linked with each PWSI. Ideally, the PWSI is within or
immediately adjacent to a 3 × 3-pixel array to allow robust estimation
of cyanoHAB abundance directly impacting that PWSI. A 3 × 3-pixel
array was selected because satellite navigation may not be accurate to
the pixel, so this area represents the water characteristics surrounding
the location of utility intake. Unfortunately, few PWSIs met this
criterion. PWSIs often were not directly adjacent to definable water
bodies, or could be associated only with smaller water bodies lacking
3 × 3-pixel arrays. Additionally, work at all scales is useful for
potential recreational and ecological exposures assessment.

To account for this variation, four categories were developed to link
a PWSI with particular Areas of Interest (AOI), the group of pixels used
to generate cyanoHAB abundance for the linked PWSI (Fig. 4). These
categories are progressively more liberal in their assignment of water
pixels to PWSI. Therefore, they offer a potential tradeoff between
locational accuracy (highest with the most conservative category, #1
below) and broader coverage (highest with the most liberal category,
#4 below). PWSIs that could not be associated with any pixels
satisfying the first four categories also were identified. The five
categories are summarized below.

• Adjacent AOI: CyanoHAB abundance was assessed for the nearest
scenario using a 3 × 3-pixel satellite array centered within 300 m
(one MERIS pixel) of a PWSI location. This best case scenario
identified PWSIs either within or directly adjacent to an available
3 × 3-pixel satellite array, where adjacent is defined as less distant
than a single 300 m pixel.

• Proximate AOI: CyanoHAB abundance was assessed for the nearest
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Fig. 1. Study area location map (A) indicates MERIS scene boundaries for (B) Ohio and (C) Florida. The representative single-day images for Ohio was from 9/3/2011 and for Florida was
from 10/18/2010. Brown pixels are land masks; black, dark-grey, and light-grey pixels indicate a low likelihood of bloom, no data, and cloud cover respectively. Colored pixels indicate
cyanoHAB abundances from high (red) to low (purple). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Previous validation of CI algorithm using all cyanobacterial cell count available in situ data within ± 7-days of the satellite overpass from Florida, Ohio, and New England states
revised from Lunetta et al. (2015). Revisions include presentation of the data in log space, mean absolute percent error (MAPE), and coefficient of determination with the exclusion of
algorithm non-detects and minimum detect values.
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3 × 3-pixel satellite array centered within 900 m of a PWSI loca-
tion. The proximate AOI category is identical to the adjacent AOI
category except that the maximum distance is increased to 900 m
(width of a single 3 × 3-pixel array).

• Waterbody AOI: CyanoHAB abundance was assessed for all satellite
pixels of the nearest waterbody with ≥9 pixels within 900 m of a
PWSI location. In this case, it is assumed that a neighboring
waterbody adequately represents the AOI waterbody.

• Watershed AOI: CyanoHAB abundance was assessed for all satellite
pixels within the Hydrologic Unit Code (HUC) 12 watershed with
≥ 9 pixels encompassing the PWSI location. If no waterbody with
sufficient available pixels can be identified within 900 m of a PWSI
location, the entire watershed encompassing that PWSI was con-
sidered, assuming that the watershed has at least 9 resolvable pixels
(at least as many pixels as a standard 3 × 3-pixel array).

• Unresolvable AOI: No candidate satellite pixels satisfied the criteria
in categories 1 through 4.

If a PWSI fit the criteria of the adjacent AOI category, then that
PWSI also was included in AOIs 2 through 4. Each PWSI subsequently
was added to the next representative AOI category. For example, any
proximate PWSI also fit the criteria of the waterbody and watershed
AOI categories, but not the criteria of the adjacent AOI category. The
waterbody and watershed AOI categories provide cyanoHAB informa-
tion relevant to human and ecological health risks for evaluating
exposure potential within a waterbody or across a watershed.

2.4. Temporal coverage

A binary classification was applied to year-round observations of all
pixels. The classification was either a valid cyanoHAB or invalid due to
clouds, land, mixed land-water, and missing data values. The frequency
of valid pixels was calculated to determine the number of valid satellite
observations acquired from 2008 through 2011 as the percentage of
weeks with valid observations. Counts of valid observations then were
summed across the 2008 through 2011 year-round time series and
divided by the total number of available scenes to summarize the
percent of valid observations. The 2008 through 2011time period was
selected because consistent MERIS 2- to 3-day repeat visits at full
resolution within the U.S. were not routinely added until after 2007 and
the satellite record ended in May 2012.

2.5. Frequency of observed cyanoHABs

The frequency of observed cyanoHABs was calculated as the
fraction of total pixel observations for which cyanoHAB abundance
exceeded a specified threshold, specifically, WHO’s high threshold of
100,000 cells mL−1 (WHO, 1999). This threshold was selected for
demonstration purposes, and any cyanoHAB threshold level can be used
for future analysis. Similar to the method of determining the temporal
coverage discussed in Section 2.4, pixel values above the WHO high
threshold were classified as 1, and values below the WHO threshold
were classified as 0. Values were summed for each pixel and divided by
the total number of valid observations (not flagged for clouds, land,
mixed land-water, or no data).

For each category relating AOIs to reported PWSI locations, a
distribution of cyanoHAB frequencies across all possible AOIs was
generated relevant to that category. For both the adjacent and
proximate AOIs, distributions were calculated across all possible
combinations of 3 × 3-pixel arrays. For the waterbody AOIs the
distribution was calculated across all waterbodies with ≥ 9 resolvable
pixels. For the watershed AOIs, the distribution was calculated across
all watersheds with ≥ 9 resolvable pixels. For each AOI, quartiles were
calculated for the full distribution of bloom frequencies, with Q1
representing the lowest quartile of frequency and Q4 representing the
highest, and PWSI locations then were assigned to respective quartiles.

Fig. 3. This example estimation of lake, reservoir and pond satellite spatial coverage,
where a was the window width and R was the radius of the circle that circumscribes the
pixel(s). The example is shown for a window width of 900 m, representing a 3 × 3-pixel
array of 300 m MERIS pixels. Shading indicates the maximum window width that can be
accommodated as specified in the legend.

Fig. 4. Areas of interest (AOI) for resolving public surface water intakes (PWSI) using
different combinations of 300 m MERIS satellite pixels. Adjacent AOIs use the nearest
3 × 3-pixel array within 300 m of the PWSI location. Proximate AOIs use the nearest
3 × 3-pixel array within 900 m of the PWSI location. Waterbody AOIs use all satellite
pixels of the nearest waterbody with≥9 pixels within 900 m of PWSI location. Watershed
AOIs use all pixels within the HUC12 watershed with ≥9 pixels that encompasses the
PWSI location.
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3. Results

3.1. Spatial resolution of waterbodies

Of the 379,097 lake, pond, and reservoir NHDPlusV2 waterbodies
within the continental United States, 275,897 (73%) remained after the
U.S. EPA NLA 2012 criteria were applied. Of these waterbodies, 5.6%
were resolvable by a window width 300 m wide, a resolution equivalent
to one MERIS pixel (Fig. 5). Increasing the window width to 900 m
(equivalent to a 3 × 3-pixel array), reduced coverage to 0.7% of
waterbodies. Any window width where a < 42 m resolved all water-
bodies as defined by the U.S. EPA NLA 2012 criteria. Therefore, by
ignoring window widths< 42 m, we were able to fit a power function
regression defined as y = 781,700,770(a)−1.9 with R2 = 0.99. This
function allowed interpolation of the number of resolvable water bodies
at any arbitrary window width.

3.2. Spatial resolution of public water surface intakes

A total of 3086 individual PWSI locations were reported within
100 m of a valid waterbody nationally. A total of 1991 unique water-
bodies were associated with at least one PWSI location. Given that a
single waterbody may have multiple PWSI locations, there are more
PWSI locations than unique waterbodies associated with a PWSI. Use of
a window width of 300 m resolved 57% of PWSI locations and 43% of
waterbodies associated with a PWSI. Increasing the window width to
900 m reduced coverage to 33% of PWSI locations and 15.1% of
waterbodies associated with a PWSI. Access to higher resolution
satellite imagery would substantially increase the spatial coverage of
PWSI locations.

After applying the EPA NLA 2012 criteria, there were 10,910
waterbodies in Florida and 4591 waterbodies in Ohio, and 8.3% of
waterbodies in Florida and 2.8% of waterbodies in Ohio were resol-
vable by the 300 m MERIS pixel resolution. Increasing the window
width to 900 m decreased waterbody resolvability to 1.3% and 0.4% in
Florida and Ohio, respectively. In Florida, 10 PWSI locations were
associated with five unique waterbodies. Use of a window width of
300 m was able to resolve eight PWSI locations associated with four
unique waterbodies. A 900 m window width decreased spatial coverage
to seven PWSI locations associated with three waterbodies. For Ohio,
187 PWSI locations were associated with 98 waterbodies. Of these, 88
PWSI locations associated with 32 waterbodies were resolved at 300 m,
and 51 PWSI locations associated with 10 waterbodies were resolvable
at 900 m.

Table 1 shows the number of PWSI locations in Florida and Ohio

spatially resolved by satellite under the five AOI categories. As
anticipated, the least number of PWSI locations could be resolved
under the adjacent AOI category. The greatest number of PWSI
locations could be resolved under the waterbody AOI category. Only
10% (19) of 189 total PWSI locations were resolved using the adjacent
AOI category, 22.2% (42) were resolved using the proximate AOI
category, 26.4% (50) were resolved using the waterbody AOI, and
11.6% (22) using the watershed AOI. The watershed AOI yielded lower
coverage than the waterbody AOI category in Ohio largely due to the
effect of Lake Erie, which was associated with a large number of PWSI
locations but did not fall within a watershed in this analysis. All PWSI
locations in the Florida study region were spatially resolvable in at least
one of the four AOI categories. In Ohio, 74.3% of the PWSI locations
could not be resolved using even the most liberal watershed AOI
category (AOI 4), because lakes were generally smaller in this state.

3.3. Temporal coverage

As described in Section 2.1, temporal coverage was calculated for
Florida and Ohio as the percentage of weeks with valid observations
across the study period. Mean temporal coverage was 80%
(±0.0003% SE) of weeks across Florida and 67% (±0.0002% SE)
across Ohio. The distribution of temporal coverage was narrow and
unimodal across each region (Fig. 6) indicating lakes generally have the
same amount of data coverage across each state. In Florida, 80% of
pixels represented valid observations 90% of the time, and in Ohio,
70% of pixels represented valid observations 70% of the time.

3.4. Frequency of observed cyanoHABs

Fig. 7 illustrates cyanoHAB frequency as the per-pixel percentage of
observed cyanobacterial abundance exceeding the WHO high threshold
of 100,000 cells mL−1 for Florida. A pixel value of 1 indicates all
observations were above the WHO threshold, and a pixel value of 0
indicates no observations above the threshold. The mean weekly
cyanoHAB frequency across all pixels in Florida was 30.1%,
(σ= 29.9%), and in Ohio was 4.6% (σ= 11%). The waterbodies with
the highest observed bloom frequencies per region were Lake Apopka,
FL (99.1%) and Grand Lake St. Marys, OH (83%).

Quartiles (Table 2) calculated for bloom frequency reveal a broad
range of cyanoHAB activity across all waterbodies. Fig. 8 shows a
representative time series, one for each quartile, of observations above
the WHO high-threshold for four waterbody AOI locations. The fourth
quartile (Q4) example in Fig. 8D indicates a higher frequency of pixels
exceeding the WHO high threshold, and greater temporal persistence of
high cyanoHAB abundance. Modest differences were observed between
the Q1, Q2, and Q3 examples. In the most extreme case, a Q4 time
series would report 100% of pixels exceeding the WHO threshold for
nearly the entire time period (not shown). Seasonal patterns reflected
typical bloom trends and were repeated across years with variable
magnitudes. These temporal patterns suggest potential in scaling this
approach for individual systems in addition to state, regional, and
national applications.

Fig. 9 shows the distribution of cyanoHAB frequency across all
possible AOIs relevant to each of the four categories used to associate
an AOI with reported PWSI locations. AOIs were ranked by frequency of
pixels over the WHO threshold, with overall frequencies ranging from
0% for the lowest rank to over 99% for the highest rank. Distributions
of bloom frequency were markedly different depending on whether
they were calculated based on all 3 × 3 pixel arrays (8A and 8B),
waterbody (8C), or watershed (8D) AOI rankings. The upper quartile
(Q4) was at 8.5% for both adjacent and proximate AOI rankings. In
contrast, Q4 was 40% and 42% when distributions were determined for
all waterbodies and watersheds, respectively.

The highest number of PWSI-associated AOI falling into Q4 were
found using the proximate category (11 out of 42, or 26.2%; see

Fig. 5. Satellite spatial coverage for NHDPlusV2 NLA water bodies. Solid horizontal lines
indicate that 5% and 60% of all waterbodies were resolved with 300 m and 90 m window
widths, respectively. Black diamonds represent 900 m, 300 m, 90 m, and 30 m example
window widths, respectively, consistent with a MERIS or Sentinel-3 Ocean and Land
Colour Imager (OLCI) 900 m 3 × 3-pixel array, single 300 m pixel, and higher-resolution
sensors such as the Landsat OLI and Sentinel-2 MSI 30 m pixel or 90 m 3 × 3-pixel array.

J.M. Clark et al. Ecological Indicators 80 (2017) 84–95

89



Table 2). A similar percentage but lower number of AOIs fell into Q4
under the adjacent category (4 out of 19, or 21%). The waterbody and
watershed AOI rankings resulted in dramatically lower frequencies of
PWSI-associated AOIs falling into the highest quartile (2% under the
waterbody criterion, 7.7% under the watershed criterion). This pattern
likely reflects the effect of averaging cyanoHAB frequency over larger
surface areas in these cases.

Regional differences also are apparent in the distribution of
cyanoHAB frequencies. Under the adjacent AOI category, the single
resolvable PWSI location in Florida fell into Q4. In Ohio, most PWSI
locations fell into Q2 (11 out of 18, 61%), with only 16.7% falling into
Q4. A similar but less dramatic pattern held for the proximate AOI
category, with 42.9% of PWSI locations falling into Q4 in Florida,
compared to only 22.8% for Ohio. Analyses under the waterbody and
watershed AOI categories were less likely to place PWSI locations into
the highest quartile, with no PWSI locations under either category
falling into Q4 for Florida and with only 2.4% of the PWSI locations
under the waterbody category and 8.3% of the PWSI locations under
the watershed category falling into Q4 in Ohio.

Table 1
Number of PWSI locations in Florida and Ohio spatially resolved by satellite under the five AOI categories.

PWSI AOI Category

State Adjacent Proximate Waterbody Watershed Unresolvable Total PWSI Locationsa

Ohio 18 35 42 12 133 179
Florida 1 7 8 10 0 10
Sum total 19 42 50 22 133 189

a Total number of surface intakes for each location.

Fig. 6. Distribution for percentage of time pixels observed as cloud free and percentage of
MERIS resolvable water pixels observed in (A) Ohio and (B) Florida from 2008 through
2011. The thick black line represents the mean, and the thin black line represents the
median. Fig. 7. Frequency of observed cyanoHAB occurrence above WHO high threshold in

Florida from 2008 through 2011. A value of 1 indicates that the pixel was observed to
have cyanoHABs above the WHO threshold in all observations, and a value of 0 indicates
that the pixel had no cyanoHABs above the threshold.

Table 2
Quartile ranking for the adjacent, proximate, waterbody, and watershed AOI categories
for Ohio and Florida PWSI bloom frequency locations.

AOI Category State Q1 Q2 Q3 Q4 All

Adjacent Florida 0 0 0 1 1
Ohio 1 11 3 3 18

Proximate Florida 0 2 2 3 7
Ohio 4 12 11 8 35

Waterbody Florida 3 1 4 0 8
Ohio 35 2 4 1 42

Watershed Florida 3 3 4 0 10
Ohio 1 3 7 1 12
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Fig. 8. Representative percent valid MERIS pixels above the WHO threshold for (A) 0–25% Q1, (B) 25–50% Q2, (C) 50–75% Q3, and (D) 75–100% Q4 using the waterbody AOI category
in Florida. (A) may represent a response more similar to oligotrophic waters, and (D) may represent hypereutrophic waters. Weekly composites were used for the complete calendar years
2008 through 2011. Vertical grey dashed lines mark calendar years.

Fig. 9. Distribution of satellite derived cyanoHAB abundance valid pixels>WHO high threshold for NHDPlusV2 NLA waterbodies and PWSI locations across Ohio and Florida from 2008
through 2011. (A) Adjacent, (B) proximate, (C) waterbody, and (D) watershed AOI rankings were separated into quartiles indicated by dashed horizontal lines. Gray points represent the
AOI for all resolvable locations, and black diamonds represent PWSI locations.
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4. Discussion

Measures of cyanoHAB abundance have already proven useful as
biological, recreational, and health indicators in many international
assessment programs and organizations, such as the U.S. EPA NLA,
Baltic Marine Environment Protection Commission Helsinki
Commission (HELCOM), Europe's Water Framework Directive
(Phillips et al., 2013), and WHO (Chorus and Cavalieri, 2000).
CyanoHABs may serve as an indicator because they are easily measured
from satellite, respond quickly to ecosystem alterations, may be
mitigated through management actions, and are a response to anthro-
pogenic eutrophication (Dale and Beyeler, 2001). Although this method
is demonstrated using the WHO high threshold and satellite coverage
for only two U.S. states, it also provides great flexibility. As mentioned
in Section 2.5, any threshold may be selected, depending on stake-
holder needs and requirements, such as a different jurisdictional risk
thresholds. This method is also spatially and temporally scalable.
Spatially, the indicator assessment could be scaled up to regions or
the continent, or scaled down to a specific management district or even
a single pixel. Temporally, the frequency counts could be calculated
yearly or back through the historical archive of the satellite record. For
example, at the federal level, there may be interest to conduct this
assessment method for the entire nation, using any detectable level of
cyanoHABs and the entire satellite record, to develop a national ranking
of recreational waterbodies and PWSIs with the greatest exposure to
cyanoHABs. However, each state could also rank only its resolved
waterbodies to assist with prioritizing resources for management.
Overall, policy makers and environmental managers may use cyano-
HAB frequency-of-occurrence maps and rankings as early-warning
indicators of areas more likely to experience blooms at the local scale
while maintaining continuous national coverage, or to quantify change
in cyanoHABs over time.

Although satellite based methods provide great flexibility at new
spatial and temporal scales of monitoring, there are limitations. First,
the MERIS archive data date back to 2002, but consistent 2- to 3-day
repeat visits at full resolution within the U.S. were not routinely added
until after 2007, thus restricting the study period for this analysis to
2008 through 2011. All satellite algorithms to derive geophysical
variables have error associated with model performance (Schaeffer
et al., 2013b), as does in situ sampling and laboratory analysis (Trees
et al., 1985). Lunetta et al. (2015) report correspondence across the
spectrum of cyanoHAB abundance ranges spanning 10,000 to>1
million cells mL−1. Satellite derived values below 109,000 cells mL−1

and above 1,000,000 cells mL−1 had correspondence above 80% with
in situ samples collected within 7 days of a satellite overflight match up.
The CI algorithm had a lower correspondence performance of 110,000
to 1,000,000 cells mL−1, which was expected due to the availability of
only a few in situ measures in this abundance range and the±7-day
temporal window for coincident satellite match-ups. The binary
categorization of values either above or below 100,000 cells mL−1,
used in this approach would further reduce the impact on algorithm
error and uncertainties. In the future, validation exercises would
optimally be compared with cell biovolume or pigment concentrations
instead of cell counts. The biovolume impacts on reflectance are
determined by the quantity of pigment and scattering of individual
species, which can differ by an order of magnitude and would improve
satellite validation efforts. However, taxonomic biovolume reporting is
not standard and pigment measurements are rare. All satellite algo-
rithms detect only near-surface concentrations, but the red and near-
infrared part of the spectrum provide information from only the upper
1 m of the water column (Kirk, 1994). High cyanoHAB abundance near
the surface poses risk during recreational activities, such as swimming
and boating. Subsurface abundance of cyanoHABs also poses a risk for
PWSIs. Combined information on surface blooms with physical factors
like wind stress and speed will improve the inference of the vertical
distribution of cyanoHABs in the future (Wynne et al., 2010). Cloud

cover and ice formation limited the usability of satellite images at
different rates, depending on the climatology of the studied location. As
Fig. 6 shows, more cloud-free pixels were available for longer in Florida
than Ohio. This discrepancy in temporal coverage likely reflects
expected differences in cloud cover due to variations across latitude
(Mercury et al., 2012), and also due to local impacts by large lakes in
Florida, which create conditions that reduce convective cloud develop-
ment, especially in summer. The frequency-of-occurrence method could
suffer from bias in detection of cyanoHABs across regions with different
cloud coverage, but the ability to provide synoptic coverage may
outweigh this issue. Originally, this study included New England states
with cloud-free pixels an average of 47% of the time. New England
results were removed from this analysis after it was discovered that
sensor saturation over ice caused algorithm failures during winter
months and incorrectly resulted in cyanoHAB detections between
November and March each year. New England could be included after
an appropriate ice flag is applied to the satellite processing.

Spatial resolution remains a major limitation for monitoring inland
waters due to the necessity to repurpose both current and future ocean
color and land satellite sensors to answer relevant questions related to
water quality science, applications, and management. Verpoorter et al.
(2014) reported that waterbodies with area>100 ha (1 square kilo-
meter [km2]) comprise 60% of total surface area of global inland
waters, which suggests that a sensor with 300 m resolution could
resolve over half of global inland waters by area. The percentage of
resolved surface area is important and relevant, especially when
considering factors as the global carbon cycles and continued rapid
construction of dams to create reservoirs (Lehner et al., 2011; Nilsson
et al., 2005). However, Hestir et al. (2015, see Fig. 4) demonstrates that
the percentage of resolved surface area can vary greatly across
continents due to geomorphology. Therefore, use of the total surface
area of a waterbody could confuse the understanding of how many
waterbodies may benefit from satellite data for decision making
because of a bias toward inland waterbodies with larger surface area.
For example, in the U.S., the Great Lakes alone comprise 2.44 × 107

hectares (244,079 km2), or roughly 35% of the total freshwater surface
area. Similarly, it has been estimated that data from MERIS or OLCI
could provide coverage to 57% of the world’s lakes with area> 100 ha
(1 km2) (Matthews et al., 2010) based on estimates from Downing et al.
(2006). However, these larger waterbodies clearly are not the sole
potential targets of management concern.

Results from this study suggest that previous reports of satellite
coverage may indeed present a misleading estimate of the degree to
which satellite imagery can resolve waterbodies. Estimates of satellite
coverage in the current study (Fig. 5) indicate that< 1% of all U.S.
waterbodies> 1 ha are resolvable by a 3 × 3-pixel MERIS array and
that only 5.6% are resolvable by even a single MERIS pixel. These
results show important constraints on management utility posed by
currently available satellite resolution. Increases in resolution to levels
commensurate with other satellite platforms (such as Landsat OLI and
Sentinel-2 MSI) would dramatically improve coverage of smaller
waterbodies and substantially increase the value of satellite imagery
for assessing water quality at specific locations. In practice, the
combination of satellites, in situ sondes, field sampling, and coupled
modeling efforts will provide the best available information for water
quality assessments because these methods all provide observations at
different spatial and temporal scales.

Ideally, a PWSI will be directly under satellite pixels and far enough
removed from land that only a signal from the water is measured, with
no potential for mixed land-water signals. This ideal scenario was rarely
the situation during this study based on the limited number of adjacent
AOIs in Ohio and Florida. A number of PWSI reported locations were at
the land-water interface or just downstream, directly where satellite
pixels were flagged for stray-light contamination of the brightly
reflected light from land. Although these PWSI locations were not
directly under a useful satellite pixel, the data from the proximate AOI
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still provided relevant information that could be considered represen-
tative of water characteristics surrounding that particular location
because of hydrology and the amount of water a utility pulls per day.
Some PWSIs were in narrower locations of a lake where enough pixels
could not be resolved immediately within the 900 m buffer of the
location. However, the waterbody AOI still provided information
representative of the conditions throughout the entire lake that
supplied the PWSI.

Finally, many PWSIs were in lakes, reservoirs, or ponds smaller than
the satellite spatial resolution would allow for sufficient derivation of
cyanoHAB abundance. Therefore, this study provided cyanoHAB in-
formation on the collective waterbodies in a HUC12 watershed that
could be resolved. The HUC12 watershed is a local sub-watershed level
that represents interconnected water systems. This watershed approach
should be treated with caution until additional tests confirm that results
from waterbodies within the HUC12 watershed are consistently repre-
sentative of the PWSI location. The four AOI categories decreased in
representativeness of actual cyanoHAB events at the PWSI, with the
adjacent AOI category providing the best direct representation and the
watershed AOI category the broadest representation.

Scientific literature frequently cites that HAB events are increasing,
but managers are limited in their ability to determine where these
events may be occurring. This method did not address duration, and
extent of cyanoHABs was addressed with a different method. The 2008
through 2011 MERIS archive may be the best historical record for
comparison against future events to determine change over time as a
relative baseline. Caution is needed because this 4-year period is
relatively short and subject to larger scale climatological forcing. For
example, in 2007 and 2008 La Niña occurred, and in 2009 and 2010, El
Niño occurred, switching back to a La Niña in 2010 and 2011 (NOAA,
2016). The North Atlantic Oscillation Index was predominantly in the
negative phase during all 4-years.

Despite the limited 4-year duration of satellite data from 2008
through 2011, the study results may provide useful information for
following years. For example, three PWSI locations in western Lake Erie
were ranked in the upper quartile during this study under the adjacent
AOI category. In 2013, the Carroll Township public water system
identified cyanotoxins in its source and finished drinking waters.
Similarly, in 2014, a Toledo public water system that pulls from Lake
Erie identified concentrations of cyanotoxins in its source and finished
drinking waters. Under the proximate AOI, six PWSI locations in
western Lake Erie and a PWSI in Grand Lake St. Marys, Ohio’s largest
inland lake, ranked in the upper quartile. Grand Lake St. Marys
historically is known for eutrophication and cyanoHAB events
(Steffen et al., 2014). In Florida, Lake Okeechobee was identified in
the upper quartile for the adjacent and proximate AOI categories. In
2016, Lake Okeechobee was reported across national news outlets as
experiencing cyanoHABs (Neuhaus, 2016). Under the waterbody and
watershed AOI categories, only the Grand Lake St. Marys PWSI ranked
in the upper quartile. These findings suggest that when ranking PWSIs
in large and heterogeneous waterbodies, it is extremely important to
use the AOI closest to the intake location.

This satellite based method may provide frequency-of-occurrence
information for ecological and scientific studies. It also may support
national and state management needs. For example, nationally, cyano-
toxins are included in the SDWA CCL and UCMR (U.S. EPA, 2013a,
2016a, 2016b). Ten cyanotoxins are included in the proposed list of 30
chemical contaminants to be sampled during the fourth UCMR event
between 2018 and 2020 (U.S. EPA, 2015b). The method developed here
may provide relevant source water cyanoHAB occurrence and location
information to assist in the future evaluation of cyanotoxin health
effects and the levels at which they occur in drinking water. Frequency-
of-occurrence information may also assist with ecological health, such
as the prioritization of waterbodies to develop numeric nutrient criteria
(Schaeffer et al., 2013a; Schaeffer et al., 2012) or for adaptive
management practices, such as green infrastructure practices or tech-

nologies. This satellite method may provide relevant ecological health
information related to cyanobacterial biomass such as hypoxic events
that may cause death of fauna (Paerl et al., 2001), changes in
phytoplankton community composition (Dokulil and Teubner, 2000;
Huisman et al., 2004), and overall reduction in photosynthetic light
availability due to bloom shading (Tilzer, 1987). States also may use
this information to assist with prioritizing limited resources to address
recreational waters or PWSIs with the greatest frequency of occurrence.
The method may provide states with information on previously
unsampled lakes. The scientific research community may benefit by
targeting additional scientific studies on topics such as land manage-
ment or human health effects related to cyanoHABs. Overall, this
method may improve general awareness about and preparedness for
cyanoHABs for resolvable public water system utilities, especially
smaller utilities that serve< 10,000 people. The method developed
here to identify resolvable surface water bodies for cyanoHAB remote
sensing analysis can be extended to other sensors (such as Landsat or
MODIS) and other water quality parameters (such as chlorophyll-a,
turbidity, and temperature). Additionally, the method used to associate
PWSI point locations with remotely sensed water quality data could be
extended to examine the relationship between gridded water quality
data and other point locations of interest, such as release locations.

5. Conclusions

This study identified a number of resolvable U.S. inland water
bodies based on calculations using different window width resolutions
to demonstrate the potential applicability of information from satellite
sensors about water quality related to cyanoHABs. Ocean color imagers
traditionally are limited in spatial resolution for inland aquatic
applications, including the Copernicus program new series of
Sentinel-3 OLCIs (Berger et al., 2012; Donlon et al., 2012) at 300 m
that replaced the previous MERIS sensor on the Envisat satellite. A
300 m resolution sensor may provide data for 15,545 (5.6%) continen-
tal U.S. NLA lakes and reservoirs, if it is optimistically assumed that the
resolution at nadir is the same at the edge of the swath. A conservative
3 × 3-pixel grid may provide data for 1862 (< 1%) of U.S. NLA lakes
and reservoirs. Single 300 m pixel resolution resolved 57% of PWSIs
and a 3 × 3-pixel array resolved 33% of PWSIs. Land imagers such as
the Landsat OLI and Copernicus program Sentinel-2 MSI sensors have a
higher spatial resolution of 30 m but less frequent revisit cycles and less
available wavebands for deriving water quality parameters (for exam-
ple, they cannot directly measure phycocyanin to differentiate cyano-
bacteria from phytoplankton). The Copernicus program is a 15+ year
monitoring program that includes the Sentinel-3 and Sentinel-2 series
satellites (Berger et al., 2012). At the time of writing (2017), Sentinel-
3A and Sentinel-2A were already in orbit and providing data. Identical
Sentinel–3 B and Sentinel–2 B satellites were nearing readiness for
launch, and with two identical satellites in orbit repeat times will be
reduced and temporal coverage of inland waters increased. Therefore,
future land imagers must be considered as part of the comprehensive
management toolbox for monitoring water quality. A 30 m resolution
sensor may provide data for 275,897 (100%) U.S. lakes and reservoirs
at single pixel resolution or 170,240 (62%) lakes and reservoirs using a
3 × 3-pixel grid. A single Landsat OLI 30 m pixel resolution resolved
100% of PWSIs and a 3 × 3-pixel array resolved 95% of PWSIs.

The study results demonstrate a relatively straight forward ap-
proach to assess the frequency of cyanoHAB occurrence by calculating
the number of observed values above a selected threshold divided by
the total number of observations. Four methods of calculating
cyanoHAB occurrence at PWSI locations were identified. Spatial maps
of the frequency of events over time permit easy identification of
locations prone to cyanoHAB exposures in recreational and drinking
source waterbodies. These same maps may allow managers to create
national or regional rankings of cyanoHAB occurrence to quantify and
help prioritize locations in the upper quartiles that may require more
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immediate attention and adaptive management solutions. This study is
the first of its kind to compare occurrence of cyanoHABs across multiple
locations both for recreational and drinking source waterbodies. The
demonstration of these new satellite based methods may assist in the
development of management objectives and contribute as part of a
more comprehensive management approach.
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